SOLUNUM SİSTEMİNİ ANLAMADA SİSTEM DÜŞÜNMENİN ÖNEMİ

Author :  

Year-Number: 2019-21
Language : Türkçe
Konu : Fen Eğitimi
Number of pages: 121-134
Mendeley EndNote Alıntı Yap

Abstract

Her geçen gün yaşamımızda problemler karmaşık hale gelmektedir. Çalışma hayatına başlayan bireylerden bu karmaşık problemleri çözmeleri beklenmektedir. Bu problemlerin çözülebilmesi için daha önce karşılaşıp pratik yapmış olmak gereklidir. Dolayısıyla öğretmenler eğitim sırasında öğrencilerini kompleks problemlerle karşılaştırmalıdır. Öğrencilerin düşünme becerilerini gelişimi öğretmenlerin bilgileriyle yakından ilgilidir. Buradan yola çıkılarak bu çalışma planlanmıştır. Çalışmanın amacı; Fen bilgisi öğretmenliği lisansüstü programına devam eden öğretmenlerin solunum konusunu sistem düşünme ile açıklama düzeylerini tespit etmektir. Araştırmanın çalışma grubunu, 2018-2019 eğitim öğretim yılında İstanbul ilinde bulunan bir devlet üniversitesinin Fen Bilgisi Öğretmenliği üstü programına devam eden 16 öğretmen (6 Doktora, 10 Yüksek Lisans) oluşturmuştur. Çalışmada nicel ve nitel veri toplama araçları kullanılmıştır. Nicel veri toplamak için solunum sistemi sistem düşünme testi, nitel veri toplama aracı olarak da öğretmenlerin çizdikleri kavram haritaları kullanılmıştır. Nicel veriler sonucunda öğretmenlerin sistem düşünme seviyeleri %10’u uygulama- sentez, %30 sentez, %60’ı analiz düzeyinde olduğu tespit edilmiştir. Nitel verileri analizinde ise sistem bileşenlerini belirleme ve sistem bileşenleri arasında basit ilişki kurmada başarılıyken, sistem bileşenleri arasındaki dinamik ilişkileri tanımlama ve sistem bileşenlerini etkileşimler çerçevesinde organize edebilmede başarılı olamadıkları görülmüştür.

Keywords

Abstract

Everyday problems become more complex in our lives. Individuals who start working life are expected to solve these complex problems. In order to solve these problems, it is necessary to encounter and practice before. Therefore, teachers should introduce their students with complex problems during education. The development of students' thinking skills is closely related to teachers' knowledge. The aim of the study is to determine graduate program science teacher’ level of system thinking in the explanation of respiratory subject. The study group of the study consisted of 16 teachers (6 Ph.D., 10 Master) who are attending a science teaching program in a state university in Istanbul in 2018-2019 academic year. Quantitative and qualitative data collection tools were used in the study. Respiratory system thinking test was used to collect quantitative data, and concept maps drawn by teachers were used as qualitative data collection tools. As a result of the quantitative data, it was determined that the system thinking levels of the teachers were at the level of practice-synthesis, 30% synthesis and 60% analysis. In the qualitative data analysis, it was found that while they were successful in identifying system components and establishing simple relationships between system components, they were not successful in defining dynamic relationships between system components and organizing system components within interactions.

Keywords


  • Ausubel, D.P. (1968). Educational Psychology: A Cognitive View, New York: Holt, Rinehart and Winston.

  • Ben David, A & Orion, N.(2012). Teachers’ Voices on Integrating Metacognition into Science Education. International Journal of Science Education 35(18):1-33 DOI: 10.1080/09500693.2012.697208

  • Ben-Zvi Assaraf O, Orion N. (2005). Development of system thinking skills in the con- tex to fearth system education. J Res Sci Teach. 42:518–60.doi:10.1002/ tea.20061

  • Ben-Zvi Assaraf O, Orion N. (2012). Teachers’ voices on integrating metacognition into science education. International Journal of Science Education, 35,3161–3193. doi:09500693.2012.697208/10. 1080

  • Boersma , K., Jan Waarlo, A & Klaassen, K.(2011). The feasibility of systems thinking in biology education. Journal of Biological Education . 45, 4. 190-197

  • Brandstädter, K., Harms, U., & Großschedl, J. (2012). Assessing system thinking through different concept- mapping practices. International Journal of Science Education, 34, 2147–2170.

  • Daniel B, Stanisstreet M.A and Boyes E. ( 2004). How can we best reduce global warming? School students' ideas and misconceptions. International journal of environmental studies 61: 2 211-22

  • Dorough, D.K. and J.A. Rye (1997). “Mapping for Understanding”, Science Teacher (64)1, pp. 36- 41.

  • Evagorou, M., Korfiatis, K., Nicolaou, C., & Constantinou, C. (2009). An investigation of the potential of interactive simulations for developing system thinking skills in elementary school: a case study with fifthgraders and sixth-graders. International Journal of Science Education, 31(5), 655–674.

  • Hmelo-Silver, C. E, Marathe S. Liu.L.(2007). Fish swim, rocks sit, and lungs breathe: expert- novice understanding of complex systems. J. Learn. Sci. 16:307–31. doi:10.1080/10508400701413401

  • Hmelo-Silver, C.E., Azevedo, R. (2006). Understanding complex systems:some corechal-lenges. J. Learn. Sci.15:53–61.doi:10.1207/s15327809jls1501_7

  • Hmelo-Silver C.E, Pfeffer M.G. (2004. Comparing expert and novice understanding of a complex system from the perspective of structures, behaviors, and functions. Cogn. Sci. 28:127– 38.doi:10.1207/s15516709cog2801_7

  • Hmelo-Silver, C. E., Holton, D. L., & Kolodner, J. L. (2000). Designing learning about complex systems. Journal of the Learning Science, 9, 247–298. doi:10.1207/S15327809JLS0903_2

  • Hogan, K. (1999). Relating students’ personal frameworks for science learning to their Cognition in collaborative contexts. Science Education, 83, 1–32. doi:10.1002/(SICI)1098237X(199901) Jacobson, M. J., & Wilensky, U. (2006). Complex systems in education: Scientific and educational importance and implications for the learning sciences. Journal of the Learning Sciences, 15, 11– 34. doi:10.1207/s15327809jls1501_4

  • Lincoln, YS. & Guba, EG. (1985). Naturalistic Inquiry. Newbury Park, CA: Sage Publications.

  • Meilinda, M., Rustaman, N.Y. and Tjasyono, B. (2017). The Perceptions of Pre-Service Science Teachers and Science Teachers about Climate Change. Jurnal Pendidikan IPA Indonesia 6(2) 292-7

  • Monat, J.P., Gannon, T.F.(2015). What is Systems Thinking? A Review of Selected Literature Plus Recommendations. Am. J. Syst. Sci. 4, 2

  • Novak, J.D. (1995). “Concept Mapping: A Strategy for Organizing Knowledge”, in Glynn, S.M. and R. Duit (eds.), Learning Science in the Schools: Research Reforming Practice, Mahwah, NJ: Lawrence Erlbaum Associates, Inc., pp. 229-245.

  • National Research Council. (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

  • Özyurt Soytürk, B., Şahin, F.(2016). Ortaokul Öğrencilerinde Sistemik Düşünme Becerilerileri ile Akademik Başarı Arasındaki İlişkinin İncelenmesi. International Journal of Human Sciences. 13(1) p. 1473-1485

  • Pekel, F. O. and Özay, E. (2005). Turkish high school students' perceptions of ozone layer Depletion. Applied Environmental Education and Communication. 4 (2) 115-23

  • O'Brien, R. (2003). An Overview of the Methodological Approach of Action Resaerch /online/. Retrieved on 5th Semptember 2012 from http://www.wb.net/robrien/papers/ arfinal.html

  • Raved, L and Yarden, A. (2014). Developing seventh grade students’ systems thinking skills in the context of the human circulatory system Frontiers in public health 1 (2) 260

  • Rieß, W & Mischo, C.(2010). Promoting Systems Thinking through Biology Lessons. International Journal of Science Education 32(6):705-725 DOI: 10.1080/09500690902769946

  • Ruiz-Primo, M. A., & Furtak, E. M. (2004, April). Informal assessment of students’ understanding of scientific inquiry. Paper presented at the annual meeting of the American Educational Research Association, San Diego, CA

  • Shepardson D P, Niyogi D, Roychoudhury A and Hirsch A (2012). Conceptualizing climate change in the context of a climate system: Implications for climate and environmental education. Environmental Education Research 18 (3) 323-52

  • Sommer, C., & Lücken, M. (2010). Systemcompetence—Are elementary students able to deal with a biological system? NorDiNa—Nordic Studies in Science Education, 6, 125–143. Resource document http://www.naturfagsenteret.no/c1515603/binfil/download2.php?tid=1568379

  • Stave, K. A., & Hopper, M. (2007). What Constitutes Systems Thinking? A Proposed Taxonomy. In 25th International Conference of the System Dynamics Society. Boston

  • Tripto, J., Ben-Zvi-Assaraf, O., & Amit, A. (2013). Mapping what they know: Concept maps as an effective tool for assessing students’ systems thinking. American Journal of Operations Research (AJOR), 3, 245–258. doi:10.4236/ajor.2013.31A022

  • Wilensky, U. and Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense of the World. Journal of Science Education and technology 8(1) 3-19

  • Verhoeff R P. (2003). Towards systems thinking in cell biology education (Netherland: Utrecht University)

  • Yıldırım, A., & Simsek, H. (2008). Sosyal bilimlerde nitel arastırma yontemleri. Ankara: Seckin Yayınları.

                                                                                                                                                                                                        
  • Article Statistics